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Note on Backward Recurrence Algorithms 

By F. W. J. Olver and D. J. Sookne 

Abstract. An algorithm is given for the computation of the recessive solution of a second- 
order linear difference equation, based upon a combination of algorithms due to J.C.P. 
Miller and F.W.J. Olver. A special feature is automatic and rigorous control of trunca- 
tion error. 

The method is illustrated by application to the well-used example of the Bessel func- 
tions Jr(x). 

1. Introduction and Summary. Let 

(1) aryr-1 - brYr + CrYr+l = 0 (r = 1, 2, 

be a given difference equation in which the coefficients a. and cr do not vanish. 
Suppose that the equation has a pair of solutions fr and gr such that fr/gr -> 0 as 
r -*> . Then fr is said to be a recessive (or subdominant or distinguished) solution 
of the difference equation at r = o, and g. is said to be dominant. The recessive 
solution is unique, apart from a constant factor. The dominant solution is not unique, 
however, since any constant multiple of fr may be added to gr without affecting 
the asymptotic form of gr. 

Computation of fr from (1) by forward recurrence is usually impractical owing 
to strong instability. On the other hand, backward application of (1) provides a 
stable way of computing fr (but not g9), since rounding errors grow no faster than 
the wanted solution, as a rule.* In the next section, we describe briefly two published 
algorithms which enable fr to be computed without the need for accurate starting 
values at high values of r. 

In Section 3, certain difficulties in the implementation of the algorithms are 
described, and in the next section, it is shown how these difficulties can be overcome 
by combining the algorithms. 

In Section 5, the well-used Bessel function example is considered. A computing 
routine is described in which the truncation error is bounded rigorously, without 
loss of efficiency. The method is compared with methods of earlier writers. 

The concluding section, Section 6, gives proofs of certain results used in earlier 
sections. 

2. The Two Algorithms. The first algorithm, which we shall refer to as Algo- 
rithm I, is due to J. C. P. Miller [2] and has been used extensively in the computation 
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of special functions and in other contexts. It proceeds as follows. For a suitably 
chosen large integer N, a "trial" solution y(N) of (1) is generated recursively for 
r N, N - 1, * * ,O, beginning with yvN) = 0 and yN') = 1. Then fr is found by 
multiplying the y(N) by a normalizing factor XN. For example, if the value of fo is 
given then XN = fo/yN). More generally, if fr satisfies a condition of the form 

(2) mofO + mlfl + m2f2?+ = 1, 

with given coefficients mr, then 

XN = 1/( moyN) ? my N ) ? + M (N1N). 

The value of N can be estimated from the asymptotic form of fr for large r. But 
often such information is unavailable, in which event N is assigned arbitrarily. The 
adequacy of the guess is tested by repetition of the algorithm with a higher value 
and comparing results. If agreement is inadequate, then additional higher values 
must be tried. 

Algorithm II was proposed by one of the present writers [3] primarily for the 
solution of inhomogeneous difference equations of the second order.** It is, in part, 
a forward recurrence procedure. Beginning with po = 0 and pi = 1, we compute 
a solution Pr of (1) for r = 1, 2, * - - . Also computed is a sequence { e r} defined by 

eo= fo, er = arer-l/Cr (r _ 1). 

Here, fo is either the given value of the wanted solution or an arbitrary value; in the 
latter event a final normalization has to be effected by use of a relation of the form 
(2), as in Algorithm I. Computation of Pr and er is terminated automatically at a 
certain value of r, which we denote by N + 1. The determination of N is described 
below. The required approximation f(N) to the wanted solution f. is then generated 
according to the equations fNN) = 0 and 

(3) Pr+ fr - Prfr+l = er (r = N - 1, N - 2, * * * , 0). 

This algorithm is based on the solution of the simultaneous set of equations 
(1) for r = 1, 2, * * *, N - 1, with the conditions yo = fo and YN = 0. Computation 
OfPr and er represents the elimination stage, and (3) is the process of back-substitution. 

The value of N is found in the following way. We have from [3, Section 5] 

(4) fr Nr = ENPr, 

where 

(5) EN = + eN+1 + eN+2 + 

PNPN+1 PN+1PN+2 PN+2PN+3 

Generally, this series converges fairly rapidly and the sum is of the same order of 
magnitude as the first term. Suppose, for example, that the final solution is required 
to D decimal places. Then the size of the function eNpr/(PNPN+l) is examined as the 
computations proceed. As soon as this test function falls below 2 X l0-D for all 
values of r in the range of interest, the corresponding value of N is accepted. 

In cases where the series (5) does not converge rapidly, the actual value of EN 

* * A similar method has been described in [4], written apparently without knowledge of [3]. 
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can be found a posteriori by computing values of pr beyond r = N + 1 and summing 
(5) numerically. Multiplication of EN by the various pr then enables the truncation 
errors (4) to be estimated reliably. 

3. Implementation. The principal difficulty associated with Algorithm I is 
the estimation of N. Computing time is wasted if either the asymptotic estimate or 
the initial guess is much too low or much too high. Another difficulty is a slight 
uncertainty associated with the acceptance criterion: mere numerical agreement of 
solutions computed with two different values of N does not guarantee their accuracy. 

Neither of these problems attends Algorithm II. The optimum N is determined 
automatically, and the expansion (5) is available to bound truncation errors in the 
final solution. In consequence, although Algorithm II entails the more complicated 
computing procedure, the fact that only one application is needed may make it 
faster in practice. 

There is a difficulty, however, in constructing fully satisfactory computing pro- 
grams based on Algorithm II stemming from possible loss in accuracy in the forma- 
tion of the sequence Pr. Since pr is a linear combination of fr and gr, it increases 
ultimately in proportion to gr.*** Initially, however, pr may behave more like a 
multiple of fr, in which event precision is lost by cancellation. Whether this affects 
the accuracy of the final solution depends on the normalization condition being 
used. There is a final loss if the condition prescribes the value of f", but not, as a 
rule, with a more general condition of the form (2); compare [3, Section 7]. 

4. Combined Algorithm. Although none of the drawbacks mentioned in 
Section 3 is catastrophic in practice, they can be overcome altogether-without 
sacrifice of speed-by judicious combination of Algorithms I and II. The modification 
applies when the dominant solution gr tends to infinity with r in such a way that 
ultimately the absolute value of gr is monotonic. 

First, an integer M is chosen large enough to insure that if the sequence pr is 
computed from (1), beginning with PM = 0 and PM+1 = 1, then its members are 
nondecreasing in absolute value. Thus, cancellation is completely precluded. The 
selection of M is discussed below. 

Second, Algorithm II is applied to compute, for r > M + 1, the recessive solution 
which satisfies the condition YM = 1. 

Third, the values of Yr for r = M - 1, M - 2, ... , 0 are computed by backward 
application of (1). As in the case of Algorithm I, this is a stable procedure. 

Finally, the wanted solution fr is found by multiplying the Yr by a normalizing con- 
stant determined from (2). 

The exact choice of M is not critical, and an acceptable value can often be deter- 
mined by application of the following result: 

LEMMA 1. If Ibr, _ a,| + IcrI when r ? M + 1, and pr is the solution of (1) 
satisfying PM = 0 and PAI + 1 = 1, then 

(6) lPrl >_ Pr-il (r > M + 1). 

This is proved in Section 6. 

*** Even in a case in which, initially, pr is exactly a multiple of fr, it behaves eventually as a 

multiple of gr owing to the introduction of rounding errors. 



944 F. W. J. OLVER AND D. J. SOOKNE 

In practice, the procedure lends itself to two improvements, as follows. 
(i) Suppose that the solution Yr iS required in floating-point form. That is, 

Yr is assumed to be needed to S significant figures for the range (0, L), both S and 
L being given. From [3, (5.03)], we have 

(7) Yr = Pr E 
s=r PsPs+l 

As in the case of (5), it is reasonable, for large r, to approximate this expansion by 
its first term. Then referring to (4), we see that the relative error of ylN) is 
approximately 

(8) (eN7PNPN + 1)(PrPr + i /er)- 

The value of N (>L) is found by insuring that this quantity is bounded by 2 X 10s 
for all values of r in (M, L). The back-substitution begins with YN = 0 and YN-1 = 

eN:1/PN, but, instead of continuing by application of (3), we revert to the original 
difference equation (1), generating Yr from r = N - 2 through r = M down to 
r = 0. This is allowable, since errors in the backward recursion grow no faster than 
the wanted solution. 

This refinement simplifies the programming because the formula used for Yr is 
the same in the ranges (0, M) and (M, L). Moreover, in generating the sequence 
Pr, only current values need be stored. In this form, the role of Algorithm II may be 
regarded simply as a procedure for finding the optimum N for use with Algorithm I. 

Perhaps, it should be noted that this refinement applies only to homogeneous 
difference equations as a rule; in the case of an inhomogeneous equation, both forward 
and backward recursion may be unstable. 

(ii) In [5], it is shown how to construct lower bounds for the lPrl, and thence 
an upper bound for EN. By using these bounds, it is possible to choose N in such 
a way that the truncation error ENPr falls below the specified tolerance in fr through- 
out the given range of values of r. In other words, all terms in the expansion (5) 
are automatically taken into account in determining N, and not merely the first 
term. 

Both improvements (i) and (ii) are incorporated in the example given in the next 
section. 

5. Example. Consider the recurrence relation 

(9) Yr-1 - (2r/X)Yr + Yr+i = 0 

satisfied by the Bessel functions Jr(x) and Yr(x), and suppose that x is real and 
positive. It is well known that for fixed x and varying r the behavior of the Bessel 
functions is quite different in the ranges 0 < r < x and x < r < o. In the former 
range, the functions oscillate with slowly changing amplitude, whereas in the latter 
range, Yr(X) tends rapidly to - and Jr(X) tends rapidly to zero. Let us suppose 
that Jr(X) is required to fixed-point accuracy for r ? x and floating-point accuracy 
for r > x. More precisely, if [x] denotes the integer part of x then J,,(x) is required 
to D decimal places for 0 < r _ [x], and S significant figures for [x] ? r < L. Here, 
S and L are prescribed, and D is the number of decimal places in J[ z (x) corresponding 
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to S significant figures in the same quantity. Since |Jr(x)l is bounded by unity,t it 
follows that D _ S. 

A sequence PM, PM+1, is computed by forward application of (9), beginning 
with PM = 0 and PmI+i = 1. In the notation of Lemma 1, we have Ibr, = 2r/x and 

1a,j + Icrl = 2. Hence, with M = [x], we can be sure that Pml, PMtI, * * is a non- 
decreasing sequence. Since all the quantities e, in this example are unity, computation 
of pr is terminated at r = N, where N (> L) is the least odd integer for which 

(10) PNPN+1 > (2 X 10S)PLPL+1; 

compare (8). Values of Yr for r = N, N - 1, . , 0 are found by backward application 
of (9), beginning with YN = 0 and YN-1 = I/P N. Finally, the desired Jr(x) are obtained 
by multiplying the Yr by the factor l/(yo + 2Y2 + 2Y4 + + 2YN-1), sincett 

JO(x) + 2 J2(x) + 2J4(x) + * = 1. 

Because YM = 1, this normalizing factor equals JM(x), approximately, and therefore 
cannot exceed unity in absolute value. 

The actual truncation error in each Yr for the range (M, L) could be found from 
(4) and (5). Instead, however, we adopt the suggestion made in Section 4(ii) and 
increase N to N, say, to guarantee that 2 X 10-S is an upper bound for the relative 
truncation errors in YM, YM+1, * * YL. This depends on the following result, which 
is a refinement of Theorem 2 of [5] in the present case. 

LEMMA 2. Let x > 0, M = [x], and the sequence pm, pM+19 ... be defined by 

PM = 0PM+I = 1, and 

Pr+, = (2r/X)Pr - Pr-i (r ? M + 1). 

Then 

Ps+?/Ps > min(Pr+l/Pr, Xr) (s ? r > M), 

where Xr is the largest zero of the quadratic X2 - 2(r + 1)x-' X + 1. 
The proof of this result is given in Section 6. To apply the lemma, write 

(11) Kr = Pr+l/Pr5 Pr = min(Kr, Xr)5 

and let N be the least integer for which (10) is satisfied. The value of PN is found 
by testing the sign of 

'AN PN+1 - 2(N + 1)X PN+1PN + PN. 

If AN < 0, then PN = PN+1/PN, otherwise 

PN = XN = (N + 1)/x + {((N + 1)/X)2 - 1 

Having obtained PN, we compute N as the least integer exceeding N for which 

(12) PR > (2 X 10)PLPL+1PN/(PNI 1). 

t [6, Section 2.5]. 
tt [6, Section 2.22]. 
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To verify that N has the desired property when defined in this way, we have, 
from (5) and (1 1), 

EN = 2(1 1 + __ 1 ) 
PN KNg KNK+ 1 KNKN+1KN+ 2 

Use of Lemma 2 gives 

(13) E- + + + PN 
PN PN PN NN(PN 1) 

Since Yr is at least l/pr+, (compare (7)), the truncation error of y(N) relative to the 
magnitude of Yr is bounded by EvprPr+l. If M ? r ? L, then from (12), (13), and 
Lemma 1, we see that 

ENPrPr + 1 <ENPLPL+1 _ PNPLPL+1/PN(PN - 1i) <_ 2X 

as required. 
Remarks (i). In an unpublished paper [7], Kahan proposed the following method 

for estimating N. Starting with y [, I = 0 and y [ - I + 1 = 3, where d is an arbitrary 
positive number (though small in practice) the sequence Yr is computed by forward 
application of (9). Then, for fixed-point computation to D decimals, N is the least 
integer for which YN+ 1 > (2 X 10D)13. FORTRAN programs based on this criterion 
have been constructed [8]. In spirit, this procedure is the same as in the present paper, 
but lacks the precise control of error. 

(ii) Asymptotic estimates of an acceptable N are given in [1, Section 5]. These 
are somewhat complicated to reproduce in full, but it is to be noted that they give 
a value exceeding 'ex, where e is the base of natural logarithms. For large x, this 
is a considerable overestimate. For example, with L = x = 1024 and S = 19, the 
criterion of the present section gives N-x = 130, compared with 'ex - x = 368. 

(iii) Numerical tables of the optimum N for floating-point accuracy (S significant 
figures) are given in [9] for the ranges x ? 100 and S < 30. Apart from the fact 
that the range of x is somewhat restrictive, tables of this kind are cumbersome to 
incorporate in a flexible computing program. 

(iv) FORTRAN programs for this example, together with extensions to complex 
x, are being prepared. 

6. Proofs of Lemmas. 
LEMMA 1. If (6) holds for a certain value of r-as is the case when r = M + 1 

then 

IPrlii - 
brPr - arPr-1 > (Ibri - lar1) |PrI > JPr+11 ~ Cr lCr1 I 

= PrI- 

LEMMA 2. By use of Lemma 1, it is seen that pr is positive for r ? M + 1. From 
the definitions (11) and the given conditions, we have 

(14) Kr+1 = 2(r + 1)/x - 1/Kr, 

and 

(15) Xr = 2(r + 1)/x - 1/Xr. 
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(i) Suppose first that Kr _ Xr. Then (14) and (15) imply that Kr+i l Xr. Next, 

2(r + 2) 1 >2(r + 1) 
Kr+2 = > 

X Kr+1 X Kr+1 

Continuation of this argument shows that Kr+s _ X r for s = 0, 1, , as required. 
(ii) Alternatively, suppose that Kr < Xr. Because Kr _ 1 (Lemma 1), it follows 

that Kr separates the two X-zeros of the function 

X - 2(r + 1)/x + 1/X. 

Hence 

Kr - 2(r + 1)/x + 1/Kr < 0, 

and therefore, from (14), Kr < Kr+?. 

Next, either Kr+1 > Xr+1 or Kr+1 < Xr+i. As in (i) the first alternative implies 
that Kr+s _ Xr+1 (S ? 1). Since Xr is an increasing function of r this gives Kr+s > Xr 

and thence K?+s _ Kr, s = O, 1, , as required. For the second alternative, we 

reason as in the preceding paragraph that Kr 11 < Kr,2 and then examine the alterna- 

tives Kr+2 >- Xr+2 and Kr+2 < Xr+2. And so on. 
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